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SPlNOlDAt AND CRITICAL POINTS IN POLY DISPERSE 
RANDOM COPOLYMER BLENDS 

MARGIT T. RATZSCH,* CHRISTIAN WOHLFARTH, 
DIETER BROWARZIK, and HORST KEHLEN 

Chemistry Department 
“Carl Schorlemmer” Technical University 
DDR-4200 Merseburg, German Democratic Republic 

ABSTRACT 

Spinoidal and critical points of the liquid-liquid equilibrium in 
random copolymer blends are calculated by application of continu- 
ous thermodynamics. Blends are composed of two copolymers, 
each consisting of two different monomer units. Both copolymers 
are characterized by divariate distribution functions with respect 
to molecular weight and to chemical composition. Based on a 
model for the excess Gibbs free energy of mixing, the necessary 
relations are derived for the calculation of spinoidal and critical 
points. The influences of the polydispersities of molecular weight 
and/or chemical composition on the instability limit are discussed. 
Miscibility maps are calculated on the basis of the critical point. 
Cloud-point curves are shown to be most sensitive to polydispersit- 
ies if the excess Gibbs free energy of mixing exceeds only slightly 
the lowest value necessary for demixing. 

INTRODUCTION 

The problem of compatibility in copolymer blends has been a subject 
of interest for many years, mainly from the practical viewpoint of mate- 
rials science. Copolymer blends may exhibit interesting properties which 
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48 RATZSCH ET AL. 

are not shown by single copolymers or by homopolymers. Tailor-made 
polymeric materials can be composed of copolymer blends in many 
ways. Their properties depend, to a certain extent, on whether the blends 
are thermodynamically stable or not. The thermodynamic stability of a 
blend means the location in a homogeneous region of the phase diagram. 

Thermodynamic considerations in the literature are usually restricted 
to a qualitative analysis of the negative or positive sign of the Gibbs free 
energy of mixing, e.g., Refs. 1 and 2, or to a calculation of the spinoidal 
and/or critical state criterion, e.g., Refs. 3-7. In most cases, polydisper- 
sity effects are neglected or are only roughly taken into account. The 
chemical polydispersity, in particular, is included within the calculations 
only in a very few papers [8, 91. 

In our preceding paper [ 101, continuous thermodynamics was applied 
to random copolymer blends to calculate the phase diagram in the liq- 
uid-liquid demixing region. We could demonstrated some special poly- 
dispersity effects on the cloud-point curve, on the shadow curve, and on 
the true boundary curves in the phase diagram of a polydisperse mixture. 

We continue this work in the present paper, where continuous ther- 
modynamics is applied to the calculation of the correct relations for the 
spinoidal curve and the critical point in blends of two copolymers, each 
consisting of two different monomer units and both characterized by 
divariate distribution functions. The influence of both chemical and mo- 
lecular weight distributions on the location of spinoidal and critical 
points are discussed. The calculation of miscibility maps based on the 
critical point allows some special features of the cloud-point curve to be 
investigated when the Gibbs free energy of mixing slightly exceeds the 
lowest value necessary for demixing. 

DlVARlATE DISTRIBUTION FUNCTIONS 

We consider two copolymers B and C (the symbol A is reserved for 
solvents [l l]), each consisting of two kinds of monomer units, 01 and 0, 
y and 6 in C .  Choosing a standard segment, we introduce the segment 
numbers r,, . . . , r,. A given species of the copolymer B is characterized 
by the segment number rB and the segment fraction Y,: 

YB = rJrB 
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POLYDISPERSE RANDOM POLYMER BLENDS 49 

where rB corresponds to  the molecular weight and Y, describes the chem- 
ical composition. Analogously, a species of copolymer C is characterized 
byr,and Y,. 

The polydisperse copolymers B and C may be described by divariate 
distribution functions WB(rB, Y,) and W,-(rc, YC), respectively, which 
have to fulfill the normalization condition 

K = B, C. 

defined by 
The number average, TK, and the weight averages, FK and FK, are 

K = B,C.  

distribution. 
Copolymers B and C are assumed to  obey the generalized Stockmayer 

where r is the gamma function, and kK and cK are given by 
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50 RATZSCH ET AL. 

(6b) 

K = B , C .  

GENERAL EXPRESSION FOR THE SPlNOlDAL 

If the stability theory in the framework of continuous thermodynam- 
ics [12-161 is applied to the copolymer blends B + C, the spinoidal 
curve is the solution of the equation 

det Qs = 0 (7) 

where det Qs means the determinant of the matrix Qs. This matrix is 
defined by 

where the elements are given by 
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POLYDISPERSE RANDOM POLYMER BLENDS 51 

Here ?? is the segment molar excess Gibbs free energy of the mixture B 
+ C, R is the universal gas constant, and T is the absolute temperature. 
All differentiations in Eqs. (8) have to be performed with respect to the 
four moments of the non-normalized distribution functions $KWK(rK, 
YK). These moments are defined by 

The zeroth moment, $K, is the overall segment fraction of copolymers B 
and C, respectively, in the blend. 

The quantities (are the elements of the matrix inverse to the matrix 

i.e., 

rfl = Rg/det RK; 
rf: = 4 = -Rfl/det RK = -Rfl/det RK 

& = RfJdet RK 

with [ 151 

Further calculations depend on the ?? model chosen and can be per- 
formed straightforward by applying the general differentiation rules. 

FREE ENERGY MODEL AND PHASE EQUILIBRIUM 

We use the model for the segment molar excess Gibbs free energy zE 
derived in Ref. 10, which is based on the assumption of random mixing 
for all copolymer segments in the blend. 
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with 

p ( r )  = a + b/T 

R;dtTZSCH ET AL. 

(13) 

The function L($& contains two empirical parameters, c and d, taking 
into account that GE usually is a more complicated function of the con- 
centration than in the classic Flory-Huggins relation. The function p(T) 
describes (to a first approximation) the influence of temperature at a 
given pressure. The parameters s,, . . . , s, account for different surface 
contact areas of the segments. The function g describes the effects (de- 
pending on chemical composition) that are concerned with the empirical 
interaction parameters g, between the four monomer units (Y to 6, in a 
random mixing approach. 

The phase equilibrium conditions in continuous thermodynamics lead 
to [lo, 1 1 1  

where 

and 
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POLYDISPERSE RANDOM POLYMER BLENDS 53 

7, and 7, have to be calqlated for both phases in equilibrium by applying 
Eq. (4a). The quantitiesf, andf, are the so-called segment molar activity 
coefficients containing all deviations fr9m the Flory-Huggins mixture 
(with x = 0). The logarithms of f, and f, are the partial segment molar 
quantities with respect to CE/RT. 

An explicit expression of the general relation given by Eq. (19) was 
derived in Ref. 10&y applying the generalized Stockmayer distribution, 
Eq. ( 5 ) ,  and the CE model summarized above. This expression reads 
(Eq. 27 in Ref. 10): 

FU = 0 = $; - $;/[I - (&/kK)(& + BKpK + fKB;/2)lkK+' (22) 

where 

The derivations in Eqs. (23) and (24) are given elsewhere (Eqs. 20-24 
in Ref. 10). Equations (22)-(24) are the solution for the problem of the 
cloud-point curve and the shadow curve, i.e., the boundary curves of 
phase separation in polydisperse mixtures. 

SPlNOlDAL AND CRITICAL POINTS BY 
POWER SERIES EXPANSION METHOD 

A general expression is given above for the spinoidal curve derived 
from the stability theory ofcontinuous thermodynamics. Equation (7) 
is valid independent of the CE model and of the distribution function 
chosen. 

In many cases it appears to be more convenient to calculate the spinoi- 
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54 RATZSCH ET AL. 

dal curve and the critical point for a special case where the EE model 
and the distribution functions are fixed from the first. Such a special 
case is given by Eqs. (22)-(24). It was shown earlier [17-201 that the 
expansion of the phase equilibrium relations, Eqs. (19), in powers of $A’ 
or $A’ or T, respectively, at the critical point provides the necessary and 
sufficient conditions for the instability limit, i.e., the spinoidal curve, 
and also for multiple critical points. Starting from the result given by 
Eq. (22), the spinoidal curve is the solution of the equation 

aFu/a$I; = o (25) 

and the additionally necessary equations for a stable single critical point 
read 

Differentiation of Eq. (22) leads to 

All differentiations have to be performed according to the chain rule, 
taking into consideration that Ff, YF, and Fr are functions of $1, too. 

The resulting equations are omitted here because of the large number 
of terms included [21]. The critical point is not equivalent to the extre- 
mum of the spinoidal curve, due to polydispersity effects, as can be 
deduced directly from Eqs. (25)-(28). 

The general result given by Eqs. (7)-(12) a_nd the special result ob- 
tained by Eqs. (25)-(28) agree if the special GE model and the Stock- 
mayer distribution are introduced into Eqs. (7)-(12). 

APPLICATIONS 

As we are mainly interested in a discussion of the influence of both 
polydispersities, calculations are performed mainly by using model mix- 
tures for the copolymer system B + C .  
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POLYDISPERSE RANDOM POLYMER BLENDS 55 

1. Model Blends of the Type B(cY@) + C(CY@) 

Casper and Morbitzer [22] gave a detailed study of the stability limits 
of such mixtures by using the spinoidal equation and the critical point 
condition for the monodisperse case. Koningsveld and Kleintjens [9] 
discussed the behavior of such blends for the polydisperse case. The 
relationship for the spinoidal and the critical point given in the present 
paper reduce to those given in Ref. 9 for the special type of blends 
considered in this section. Thus, we restrict ourselves to some illustrating 
examples. 

Model calculations are carried out in analogy to our preceding paper 
[lo] for the following conditions: 

(a) 7, = 50, k, = J, FC = 50, kc = 1, allsi = 1, c = d = 0, g,, = 
1, A = Fc - Y, = 0.1 = constant; Fig. l(a). 

(b) Parameters as for (a), but FB = 0.1 and A increases; Fig. l(b). 
(c) Parameters as for (a), but sJs, increases; Fig. l(c). 
(d) Parameters as for (a), but yB = 0.5, Fc = 0.7, and cC increases 

(e) Parameters as for (d), but cc = 0.21 and kc increases; Fig. l(e). 
(0 Parameters as for (d), but cC = 0.21 and c # 0, d # 0; Fig. l(0.  

As the critical point is a special point on the cloud-point curve (the 
point where spinoidal and cloud-point curve have a common tangent), 
there is agreement between the results presented in Fig. 1 and the corre- 
sponding results discussed in Ref. 10. But due to polydispersity, the 
critical point and the threshold of demixing do not coincide. Again, we 
observe that the main effect on the stability limit is caused by A = 
fc - yB, which was already pointed out in principle by Scott [23]. 
Polydispersity, as well as the molecular weight, Fig. l(e), and the chemi- 
cal composition, Figs. l(a) and l(d), leads to shifts in the location of the 
critical point. This effect becomes larger if more than two monomer 
units are present in the mixture (see below). Influences causedJy differ- 
ent contact surface areas, Fig. l(c), or by parameters of the 75" model, 
Fig. l(f), can partially compensate or amplify the polydispersity effects. 

(not using Eq. 6b); Fig. l(d). 

2. Miscibility Maps in Blends of the Type B(aP) + C(yS) 

The discussion about compatibility in copolymer blends is often per- 
formed on the basis of miscibility maps, i.e., diagrams with two axes 
indicating Fc and F,. The areas of such miscibility maps correspond to 
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FIG. 1. Calculated critical points for copolymer blends of the type B(af l )  + 
C(afl) as functions of (a) The weight averages yB, ye at constant A = Fc - FB 
= 0.1. For the other parameters, see text. (b) The value of A with constant FB 
= 0.1. Other parameters as in (a). (c) The surface ratio s,/s,. Other parameters 
as in (a). (d) The width of the chemical distribution ec (not using Eq. 6b with FB 
= 0.5 and Fc = 0.7. Other parameters as in (a). (e) The width of the molecular 
weight distrihtion as expressed by kc. Other parameters as in (d) with ec = 
0.21. (f) The EE parameters c and d .  Other parameters as in (d) with ec = 0.21. 
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FIG. 2. Calculated miscibility maps for copolymer blends of the type B((r/3) 
+ C(y6). For the parameters, see text. (a) Case with repulsive interactions only 
and closed miscibility region. (b) Case as in (a) but with a miscibility window in 
the system B(P) + C(y6). ( c )  Case with attractive interactions between the units 
CY and y or /3 and 6, respectively, i.e., miscibility of the corresponding homopoly- 
mer mixtures. 

one-phase regions, i.e., complete miscibility, and two-phase regions. 
Suchr-niscibility maps are usually constructed by application of the crite- 
rion GE 5 0, e.g., Ref. 2. This criterion is satisfied here for Eqs. (13)- 
(18) if g I 0, because L(GB) is positive in common cases. However, this 
approach somewhat underestimates the real miscibility region (it also 
implies that FB and Tc are infinitely large). The necessary and sufficient 
criterion of thermodynamic stability in polydisperse copolymer blends, 
as considered here, is given by Eq. (7) or (25) which have to be solved 
for a given blend composition GB at fixed parameters for the distribution 
functions chosen. 

To calculate the miscibility map, the most reasonable choice for GB is 
the value at the stable critical point. However, one has to keep in mind 
that the critical temperature and the threshold temperature do not coin- 
cide. Thus, the miscibility map based on the critical point somewhat 
overestimates the region of complete miscibility. The differences are 
shown in Fig. 2. 

To calculate some miscibility maps, we apply the grt parameter sets 
given by Karasz and MacKnight [2] who calculated the miscibility maps 
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60 RATZSCH ET AL. 

on the basis of g 5 0 (with all si = 1 in our EE model). The following 
conditions are chosen for the model calculations: 3, = 50, k, = 1 ,  7, 
= 50, k, = 1, all si = 1, cE parameters c = d = 0. As g,j parameter 
sets we apply: 

(a) g,, = 0.39 guy - - 0.1, g,, = 0.2, gbr = 0.2, 
g,, - - 0.1, g,, = 0.4; Fig. 2(a) 

&a - - 0.1, gy6 = 0.5; Fig. 2(b) 

go6 = - O * l ,  go6 - - 0.2; Fig. 2(c) 

(b) g,, = 0.3, g,, - - 0.2, g,, = 0.1, g,, = 0.1, 

(c) g,, = 0.1, g,, = -0.1, g,, = 0.17, go, = 0.37, 

The model calculations by Karasz and MacKnight indicate that the 
region of complete miscibility is independent of the molecular weight 
(7, = 3, = oo), i.e., the smallest possible region of miscibility. There- 
fore, the miscibility region calculated in this paper for given distribution 
functions with rather low molecular weight averages has to be enlarged. 
Due to the symmetric choice for copolymers B and C, there is no large 
difference in these maps between the critical point criterion and the 
threshold criterion. 

However, there is an interesting effect in the phase diagram regarding 
the region of limited compatibility of the blend. We observe a drastic 
change in the shape of the cloud-point curve and the location of the 
critical point on it if special conditions are chosen for yB and y,. In 
cases where FB and/or F, come close to the region of complete miscibil- 
ity, i.e., where g is very close to  zero, the polydispersity effects are 
strongly amplified. This is demonstrated in Fig. 3.  The cloud-point 
curve, spinoidal, and critical point are calculated for the g, parameter 
set (c), given above, with F, = 0.1 = constant and F, changed from 
y, = 0.6 to  y, = 0.35. We do not know whether experiments can be 
performed with enough precision to substantiate these calculated find- 
ings. However, we suggest that near to miscibility windows or areas, 
polydispersity effects should be taken into consideration. 

3. Blends of Copolymers Composed of Styrenic, Acrylonitrilic, 
and Methyl Methacrylic Units 

Compatibility in such blends was recently investigated by Kammer et 
al. [24-271 and by Cowie and Lath [3]. We apply their xrj parameter sets 
which lead to  the following g, parameter sets (after some recalculation 
and normalization to g,, = 1): 
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0 0.5 1 

9 0  - 
FIG. 3.  Illustration of the amplification of polydispersity effects in the phase 

diagram if the copolymer blend comes close to the region of complete miscibility. 
Parameters as in Fig. 2(c). Cloud-point curve (-), shadow curve (- - -), spinoi- 
dal curve (- -), and critical point (0). 

and g,, = 0, where CY and y indicate styrenic, /3 indicates acrylonitrilic, 
and 6 indicates methyl methacrylic units. Surface parameters are ob- 
tained on the basis of van-der-Waals surfaces [28] to s,/s, = 0.89 and 
s,/s, = 1.15. 
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FIG. 4. Calculated miscibility maps for the copolymer blend poly(styrene-co- 
acrylonitrile) + poly(styrene-co-methyl methacrylate). (a) Parameter sets (1) and 
(2), see text, and all s, = 1. (b) Parameter set ( I )  and s, varied, see text. 

Figure 4 shows the miscibility maps calculated on the basis of the 
critical point with fK and TK, chosen as above. There is an observable 
difference between the cases s, = 1 and si # 1. The miscibility region 
changes somewhat due to  weighing the interacting units with the surface 
factors. Neglect of the surface factors leads to a certain overestimation 
of the miscibility region with respect to  FB. Again, we observe an ampli- 
fying effect of polydispersity if we calculate the cloud-point curve, 
spinoidal, and critical point close to the border where g equals zero. This 
is demonstrated by Fig. 5 for the parameter set (1) with all s, = 1, for 
which g equals zero at yB near 0.58. 

CONCLUDING REMARKS 

The aim of this paper is to provide the relationships for the spinoidal 
and the critical point in blends of random copolymers which are polydis- 
perse both in molecular weight and in chemical composition. The neglect 
of both polydispersities, which often occurs in the literature, leads to a 
distinct loss of accuracy in calculating the instability limit of such blends 
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FIG. 5 .  Calculated phase diagrams for the same blend as in Fig. 4. Cloud- 
point curve (-), shadow curve (- - -), spinoidal curve (- * -), and critical point 
(U). For the parameters, see text. 

(in addition to the effect of some assumptions with respect to  the model 
parameters necessary for practical calculations). 
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